

PROGRESSIVE CAVITY PUMPS (PCP)

GENERAL PRESENTATION

FLEXON-ALL was founded in 2004 to be a little production company that produces technical articles made of polyurethane, plastics and metals for oil-well industry, drilling and extraction , and other industrial equipment.

Ever since the beginning of the activity FLEXON-ALL collaborates with UPETROM and AXON, in the designing and producing of pumps with progressive cavities for extraction and pumping oil, salt water, etc.

Based on the experience and knowledge of its specialists in PCP, FLEXON-ALL has specialized also in manufacturing of transfer units equipped with PCP for high and small flows at different pressures.

Currently in our manufacturing portfolio, together with Upetrom, for rotor manufacturer, and AXON, for rubber manufacturer, we have 18 different types of PCP for flows between 1,6 to 135 m3/ day x 100 rpm with lifting depths from 600 to 3600 m.

We have accomplished, until now, manufacturing and selling over 5000 PCP for different markets: Romania, Russian Federation, Kasakhstan, Moldova, Ukraine and Albania.

The advantages of using the rotary extracting system by means of helical pumps are more than obvious, as the following are obtained:

- Low costs of system installation,
- Low costs for exploitation,
- It can circulate crude oils of very high viscosity, with a high content of mechanical impurities, as well as light crude oils, with a content of gases
- Specially long life: operation periods of 1–6 years, which again involves low costs for workover by occurrence of accidental interruptions of operation for various reasons,
- Low costs of purchase and commissioning of the system, compared to other types of equipment.
- We promise a quality product and best quality support for it. Each year we invent to improve our ability to meet your pumping needs and to solve your most difficult fluids handling problems
- We are allways looking for new ways to improve our pumps so they will last longer, perform better and be a greater value to you, our customer.

PCP - How does the system operate? PCP - Marking

HOW DOES THE SYSTEM OPERATE?

The principle of progressive cavity pumps is those designed by Reyne Moineau in 1935 and used now by all PCP fabricants.

A PCP principle consists of a single helical rotor which rotates inside a double internal helical stator.

When the rotor is inserted in the sta two chains of lenticular spiral cavities a formed. As the rotor turnes whithin the stator, the sealed cavities spiral up the pumping product without changing size or shape of stator.

A system of oil extraction with progressive cavities pump is made up of a driving unit, mounted on the well casing head, which drives, by means of the pumping drill pipes string, a helical extraction pump placed deep in the well, below the oil extraction level.

The pump is launched into the well by means of the tubing string and is equipped, at the lower head, with an anti-rotation anchor which is fixed on the casing string and prevents the unscrewing of the tubing foe to the torque formed inside the pump during its operation. The system also con

operation. The system also contains a limit switch of the rotor-tagbar and centering devices for the drill pipe, which are mounted along the string of sucker rods, in order to prevent the early wearing-out of the tubing due to the friction against the pumping pipes string. The operation principle of a PCP is based on forming lenticular cavities between the single lobe rotor and the double lobe stator, when the rotor turns within the stator.

The lenticular cavities formed as the rotor turns within the stator, in their ascending movement carry with them the pumped product with flows depending the size and the rotation speed of the rotor.

PCP MARKING

FLEXON-ALL, together with AXON and Upetrom, has in its fabrication portfolio a various number of sizes and dimensions for helical pumps.

IDENTIFICATION EXAMPLE

The helical pump manufactured by **FLEXON-ALL**, with a stator diameter $3^{1}/2$ in, maximum discharge pressure **150** bar (1500 m depth), single lobe profile, with a maximum flow up to **16** m³/day, normal (**N**) connection rotor-stator (temperatures 40-70°C) is symbolized with:

PEU - 350 - 150 - S16 - N

Additional, in accordance with ISO 15136-1, each of the two parts of the pump, stator and rotor are marked as the following:

Stator:

- profile code:
- fabrication serial number;
- elastomer type;
- month and year of fabrication.

Marking example: **K 653 / NBR2 - 05.2015**

K - profile code for PCP 16 cu.m/day x 100 rpm

017 - fabrication serial number

NBR2 - elastomer type

05.2015 - month and year of fabrication

Rotor:

- helical profile symbol
- fabrication serial number
- rotor size for tightening between rotor-stator: J (clearance), N (normal),T (tight)

Marking example: 16-1500N / 650K

16 = 16 m3/day at 100rpm;

1500 = placing depth (m);

N = clearence;

650 = fabrication serial number;

K = profile code.

PCP NOMENCLATURE

All the nomenclature pumps manufactured by Flexon-all could be found in the table below, as follows.

OUR LABEL	OUTSIDE DIAMETER X (in)	MAXIMUM PRESSURE LIFTING Y (bar)	PROFILE TYPE S (Single lobe)	MAXIMUM PUMP FLOW Z /100 rpm [M³/day]	TIGHTENING OF ROTOR-STATOR A
	238 (2 3/8")	120; 180; 240		1,6	
	278 (2 7/8")	065; 100; 120; 150; 180; 240		3	
	278 (2 7/8")	065; 100; 120; 150; 180; 240; 300		4	
	278 (2 7/8")	065; 100; 120; 150; 180; 200; 240		7	
	278 (2 7/8")	065; 120; 150		10	
	350 (3 1/2")	065; 100; 120; 150; 180; 200; 240		10	
	350 (3 1/2")	120; 150; 180; 200; 240; 360		10	
	350 (3 1/2")	065; 100; 130; 150; 180; 200; 240		13	J = clearance
DELL	350 (3 1/2")	065; 100; 120; 150; 180; 240		16	
PEU	400 (4")	060; 090; 120; 150; 180; 240	S	23	N = normal
	400 (4")	060; 090; 120; 150; 180; 240		33	T = tight
	400 (4")	060; 090; 120; 150; 180; 240		42	
	400 (4")	060; 090; 120; 150; 180		60	
	450 (4 1/2")	060; 090; 120; 150; 180		60	
	450 (4 1/2")	060; 090; 120; 150; 180		76	
	450 (4 1/2")	060; 090; 120; 150		98	
	450 (4 1/2")	060; 090; 120		122	
	550 (5 1/2")	045; 090; 120		135	

Tightenng selection between stator and rotor is very important for pump working liftime and performances in exploatation. According to working temperatures and well fluids temperatures, we fabricate rotors with tightenings classed on 3 stages of temperatures:

J for 80 ÷ 120 °C

N for 40 ÷ 70 °C

T for 10 ÷ 30 °C

ELASTOMER SELECTION

The elastomer selection is a most important step in the PCP design. It is influencing the pump lifting and performance. The right selection requires a very good knowledge of well conditions and fluids composition.

FLEXON-ALL can deliver at request, based on the data sheet for designing of the application, PCP with stator made of 7 types of elastomers that can work in various conditions at the well:

ELASTOMER SELECTION GUIDE

TYPE/CODE OF ELASTOMER	RESISTANCE TO AROMA- TIC CRUDE OIL	Max API oil gravity	RESISTANCE TO H ₂ S	RESISTANCE TO CO ₂	RESISTANCE TO WATER	WEAR STRENGHT	GENERAL CHARACTERISTICS OR APPLICATION RECOMMENDATIONS
NBR 1 high nitril	Very good	20	Medium	Good	Very good	Very good	excellent mechanical characteristics recommended for heavy crude oil (waxy), salt water with sand in suspension max. 3% maximum temperature 80°C
NBR 2 very high nitril	Excellent	40	Medium	Good	Good	Very good	excellent mechanical characteristics recommended for low aromatic and heavy crude oil, salt water with sand in suspension max. 3% maximum temperature 80°C
NBR 3 high nitril	Very Good	20	Medium	Good	Very good	Very good	excellent mechanical characteristics recommended for heavy crude oil, salt water with sand in suspension max 3% maximum temperature 110°C
NBR 4 medium nitril	Poor	12	Good	Good	Good	Excellent	excellent mechanical characteristics recommended for heavy crude oil, salt water with sand in suspension max. 5% maximum temperature 80°C
H - 1 HNBR	Very good	38	Excellent	Excellent	Excellent	Excellent	excellent mechanical characteristics recommended for low aromatic and heavy crude oil, salt water with sand in suspension max. 5% maximum temperature 120°C
H - 2 HNBR	Very good	38	Excellent	Excellent	Excellent	Excellent	excellent mechanical characteristics recommended for low aromatic and heavy crude oil, salt water with sand in suspension max. 5% maximum temperature 135°C
F FKM	Excellent	42	Excellent	Excellent	Excellent	Poor	moderate mechanical characteristics and wear strength recommended for light and very light crude oil, free of sand, salt water maximum temperature 140°C

THE STRUCTURAL ELEMENTS AND CHARACTERISTICS OF P.C. PUMPS

Rotor of each pump is designed by us and executed in collaboration with UPETROM 1 MAI which has specific equipment for processing and chrome plating. Depending on the work environment, they are made of annealed alloy carbon steel, plated on the outside with a layer of hard chrome, 0,3 - 0,4 mm, and different thickness with 3 types of stator - rotor tightenings.

For highly corrosive and aggressive environments rotors are made of stainless steel, also plated with hard chrome.

The **Stator** of each pump is designed and executed as a monoblock construction and consists of a steel frame which has a helical profile with 2 beginings in interior made of rubber resistant to working fluid and temperature.

FLEXON STRUCTURAL ELEMENTS FOR HELICAL PUMPS -

Norminal Max. Commercion C	_			_			$\overline{}$					—	_							_						
Nominal Mink	First piece	First piece	Next pieces	2 3/8"	, s,	27/8"	27/8"	\	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 / ₈	27/8"	/	27/8"	\	\	2 3/8"	or ,	«, 1	/	27/8"	\	\	2 3/8"	or ,	», 1	_
Normhal Max. Helix Libring		Outside	Diameter $LerD_{\rho}$		ı					ı						ı							ı			
Nominal Max. Hireads Lingth Displacement depth Lingth Lingth Displacement depth Lingth L		Outside	Diameter D_{M} (mm)		78				0	60						68							68			
Nominal Max.		3	sion HB (mm)		350			350	066		003	300		020	Occ			200				350			001	200
Nominal			Outside Diameter D _{NB} (mm)		78				o	, D						68							68			
Nominal									5	4 1						48							51			
Nominal Max. threads Length Diameter Connection		; ;	Pr (mm)		27,5				6	<u> </u>						40							25			
Nominal					7				c	n						3,2							3,9			
Nominal lifting					32				30	C C C						41,6							43			
Connection Consider Connection Conne			meter d _s (mm)	. 58					000	67						35,2							35,2			
Nominal Nominal							1,8	2	2,6	3,1	3,5	4,5	2,5	3,2	3,4	4,4	5,1	9'9	6,5	2,9	3,6	4,1	5,2	5,9	9′9	7,7
One of the state		Connection	Thre- ad F _R (in)		Pin 1 1/16" (rod 3/4")				Pin $1^{3}/_{16}$ "	(rod 7/8")						Pin 1							Pin 1			
Nominal		Outside	Diameter D _{ST} (mm)		99				22	۲)						92							92			
O.016 Max. Connection (m³/day) (m) Max. Threads (m) Max. Threads (m) Max. Threads (m) Max. Threads (m) Max. (m)		4	(m)	1.8	2.7	3.6	1,3	1,5	2,1	2,6	3	4	2	2,7	2,9	3,9	4,4	4,9	5,8	2,4	3,1	3,5	4,7	5,4	5,9	7
UMP Nominal lifting (m³/day) (m³/day) (m³/day) (m) 1200		ection eads		NE \^*)Ε \ Ν ν ς ₃ \	na Pa		.8 .//.	N /	' BOS	niq			ű	3∩1 10E	E \ N	∩3 ∩3	1			и	3∩E 7√2	E \ N	 ∫ui	1	
0,05	Conr	Conr	Tubing F _{TB} (in)	JN " [®]	ν 2 ³ /	BG BG		3	N / ,8/∠ z	BOX					ı∩e !\°"	1Ε / N 2 Σ 2	Bo EU					ı∩e !\°"	Σ \ X	Bo EU		
				1200	1800	2400	650	1000	1200	1500	1800	2400	650	1000	1200	1500	1800	2400	3000	650	1000	1200	1500	1800	2000	2400
			Displacement (m³/day)		0.016				60.0	50,0						0,05							80'0			
Pumţ PEU-278			Pump type	PEU-278-120-S1.6	PEU-278-180-S1.6	PEU-278-240-51.6	PEU-278-065-S3	PEU-278-100-S3	PEU-278-120-S3	PEU-278-150-S3	PEU-278-180-S3	PEU-278-240-S3	PEU-278-065-S4	PEU-278-100-S4	PEU-278-120-S4	PEU-278-150-S4	PEU-278-180-S4	PEU-278-240-S4	PEU-278-300-S4	PEU-278-065-S7	PEU-278-100-S7	PEU-278-120-S7	PEU-278-150-S7	PEU-278-180-S7	PEU-278-200-S7	PEU-278-240-S7

Tubing	ece	Next pieces		2 3/8"	2 7/8"		_	\	_	2 7/8"	or 3 1/,"	7.	<u></u>	\	27/8"	or 31/"	2 / 2	<u></u>	_	_	_	27/8"	or 2 1/ "	3 /2	<u></u>	_	\	/ "1,r c	or or	3 1/2"	
	First piece	Ž	27/8"		\setminus	3 1/2"				_	\		3 1/2"			<u> </u>		3 1/2"				_	<u>\</u>		3 1/2"				<u>\</u>		
*Pup joint	Outside	Diame- ter D _p (mm)		I					ı						I						ı							I			
Crossover	Outside	Diameter D_M (mm)		89					108						108						108						00	TOO			
Tagbar		sion HB (mm)		350			350	or or			200		350	or r		200			350				200			010	000		200		
Tag		Outside Diameter D _{NB} (mm)		68					102						102						102	•					,	102			
Г	Helix	Orbit øR (mm)		53					52,5						60,5						58,5				09	60,5			C,20		
	+ + +	Pr Pr (mm)		09					09						43,5						65				75	78			ò		
	4.00	eccentricity E (mm)		4,5					3,75						2						2				5	5,25		30	67,0		
ROTOR		meter D _R (mm)		44					48						50,5						48,5	,			0 07	49,0		7	1,64		
"		meter d _R (mm)		35					40,5						40,5						38,5				39,8	39,3		. 7.0	7','C		
	4000	Length (m)	2,7	3,9	9′9	2,9	3,5	4,2	2	6,2	6,7	8,2	2,9	3,5	4,4	5,5	6′2	3	3,9	4,3	5,5	6,4	7	8,3	3,5	4	4,3	2,5	6,5	8,5	
	Connection	ad F _R (in) Fin 1 3/1," (rod 7/8")			Pin 1 ³ / ₈ " (rod 1")							Pin $1^{3}/_{s}$ " (rod 1 ")					2	(rod 1")						Pin 1 ³ / ₃ "	(rod 1″)						
	Outside	Diameter D _{sr} (mm)		92					68						68						68						G	, ,			
8	4	Length (m)	2,2	3,4	5,1	2,4	3	3.7	4,5	5,5	9	7,5	2,4	3	3.7 *	4,8	7,2	2,5	3,4	3,8*	5	5,7	6,3	2,6	3	3,5	3,8	5	5,8	7,8	
STATOR	Connection threads	Anchor F _A (in)	3∩) E \ N \ \ \ \ \ \ Box	niq J3		8	3/Σ Σ Σ <u>Σ</u> /	Box	/ uic	ı			10E 2	E \ N Box	/ uiº	d		. 8	30NE 7√2	Box Box	/ uiº	d			.8 //"	NN /	' BO	niq I		
	Conn	Tubing F _{TB} (in)	NE %	N / 3(DB Bo			uΩE ¹/³″)X 3	Bo EU				1ΩE 1\ ⁵ ,,	E \ N	Bo EU				ΛΩΕ 1\2,"	E / I	Bo				3	ENE \ NN Box 3 ¹ / ⁵			08	
		lifting depth (m)	650	1200	1500	029	1000	1200	1500	1800	2000	2400	1200	1500	1800	2400	3600	650	1000	1300	1500	1800	2000	2400	650	1000	1200	1500	1800	2400	diameter ø1
PUMP	300	Nominal Displacement (m³/day)		0,1			,		0,1	'	•		'	•	0,1	•				•	0,14	•			0,17	0,18		77.	0,173		* Pm - small step
PU		Pump type	PEU-278-065-S10	PEU-278-120-S10	PEU-278-150-S10	PEU-350-065-S10	PEU-350-100-S10	PEU-350-120-S10	PEU-350-150-S10	PEU-350-180-S10	PEU-350-200-S10	PEU-350-240-S10	PEU-350-120-S10Pm	PEU-350-150-S10Pm	PEU-350-180-S10Pm	PEU-350-240-S10Pm	PEU-350-360-S10Pm	PEU-350-065-S13	PEU-350-100-S13	PEU-350-130-S13	PEU-350-150-S13	PEU-350-180-S13	PEU-350-200-S13	PEU-350-240-S13	PEU-350-065-S16	PEU-350-100-S16	PEU-350-120-S16	PEU-350-150-S16	PEU-350-180-S16	PEU-350-240-S16	*Pm - small

** Can be executed at exterior diamet

10

PCP - Structural elements

PUMP				STATOR	OR N					ROTOR				Tagbar	bar	Crossover	Crossover *Pup joint	Tubing	
		Max.	Connection threads			Outside	Connection	4				40	Helix			Outside	Outside	First piece	
Non Displaα (m³/	Nominal II		Tubing F _{TB} (in)	Anchor F _A (in)	Lengtn L	Diameter D _{ST} (mm)	Thre- ad F _R (in)	Length L _R (m)	Minor Dia- meter d _k (mm)	nead Dia- meter D _R (mm)	Eccentricity E (mm)	Pr Pr (mm)	Orbit øR (mm)	Outside Diameter D _{NB} (mm)	sion HB (mm)	Diameter D _M (mm)	Diame- ter D _p (mm)	Next pieces	ces
		009			2			2,5					Г					3 1/,"	abla
		006	3	E //"	3			3,5							050				_
ć		1200	∩N / ,²/₁ 8	/ NN	4	702	Pin $1^{3}/_{8}$ "	4,5	7 (מט	9	5		0	000			<u> </u>	
oʻ		1500	ox g	' BO	5,3	107	(rod 1")	5,8	4,4	6,00	60,0	?		0		ı	ı	_	"/"
		1800	 3 3	niq 3	9			6,7							002			· 	or 8
		2400			8			8,7							200			· ·	3 1/2"
L		009			3,2			3,7										3 1/,"	
		006	3	3 //"	3,8			4,3					_						_
		1200	ΠΝ / , , , , ,	∩N /	2		Pin 1 3/ ₈ "	5,5	0	O L	7	5			350			<u> </u>	
		1500	ox 3	ENE /	6,4	707	(rod 1")	6'9	4T,0	0,00	`	201		D 0		ı	ı	<u></u>	"/"
PEU-400180-S33]	1800	 3 3	niq 3	9'2			8,3										<u> </u>	or 8
PEU-400240-S33		2400			10			10,7							200			E	3 1/2"
		009			2,8			3,3										3 1/2"	
		006	3	Ξ/ ^Σ ,	4,4			4,9							350				_
- c		1200	∩N / [₹] /τ 8	£ x0	5,8	108	Pin 1 $\frac{3}{8}$ "	6,3	7 2 7	58.7	~	, ,	7 7 5	מ	n n			<u> </u>	
) 		1500	ENE	ENE '	7,3	901	(rod 1")	7,8	t, 7	20,6	0	7	į	<u> </u>		ı	ı	<u></u>	"/"
PEU-400-180-S42		1800]	ni9 J	8,7			9,4							200			· \	o's
PEU-400240-S42		2400			10,8			11,5											3 1/2"
PEU-400-060-S60		009			4,2			4,7										3 1/2"	<u></u>
PEU-400-090-S60		006	JU Z	ΩE 3 ₁\ ⁵ "	6,3			8′9							C				_
PEU-400-120-S60 0,	9,0	1200	ν 3 τ/	BOX	8,4	108	Pin 1 $\frac{3}{8}$ (rod 1")	8,9	42,3	58,3	∞	160	74,2	92	320	1	ı	<u>\</u>	
		1500	D8 J3	\ niq J3	10,5			11										_	2 7/8" or
		1800			12,6			13,3							200				3 1/2"
PEU-450-060-S60		009		ű	3,4			3,9										3 1/,"	
PEU-450-090-S60		006	JUNE	3 ₁\²	5,1		Din 4 3/"	5,6							350			_	_
о [°]	9,0	1200	ε xα	Box	8,9	114,3	Fin 1 3/8" (rod 1")	7,3	45,6	9'89	6	130	81,6	102)	ı	108	\	
		1500	Bo EU	\ ni ^c	8,4			8,9										\	3 1/,"
PEU-450-180-S60		1800		1	10,2			10,9							200				, 5

П	$\overline{}$		$\overline{}$	_	_	_	_	$\overline{}$		_	,	$\overline{}$			$\overline{}$	_											
Tubing	First piece	Next pieces	3 1/2"	\	\	,,1,"	, , ,	3 1/2"	\	\	3 1/2"	3 1/2"	\	3 1/2"	4 1/2"	\	4 1/,"										
Crossover *Pup joint	Outside	Diame- ter D _p (mm)			108				ç	001			108			133											
Crossover	Outside	Diameter D _M (mm)			,					'			ı														
Tagbar		sion HB (mm)		Ċ	320		200		Ċ	000			350			350											
Тав	9	Orbit Diameter ØR (mm)			102				ç	102			102			133											
	Helix	Orbit øR (mm)			81				, L	0T)			82,8			113											
	Ditch	Pr (mm)			170				7	CT7			240			150											
	Coontricity				6,3				5	4,0			10		12,75												
ROTOR	200	meter D _R (mm)			62,4			62,6				62,8			87,1												
	Minor Dia	meter d _R (mm)			43,8				0	6,0,0			42,8			61,6											
	# 4	(m)	4,8	6'9	9,1	11,2	13,6	9'9	8,1	10,7	12,5	2,8	8,4	11,1	3	2,5	8										
	Connection	Thre- ad F _R (in)			Pin 1 ³ / ₈ " (rod 1")	1 5			Pin 1 3/ ₃ "	(rod 1")			Box 1 $\frac{9}{16}$ (rod 1 $\frac{1}{16}$)	0		Pin 1 $\frac{9}{16}$ " (rod 1 $\frac{1}{16}$ ")	0										
	Outside	Diameter D _{ST} (mm)			114,3				7	114,3			114,3			146											
OR	4	L _{ST} (m)	4,3	6,4	9'8	10,7	12,9	5,1	9'2	10,2	12	5,3	6′2	10,6	2,5	5	7,5										
STATOR	Connection threads	Anchor F _A (in)	u	30 ₁/²	E\V Box	l / ni ∪3	d	²/₁	. 8 xo	/ BQ	niq J	ΩE 3₁\³"	IE \ N , Box ;	∖ ni¶ U∃	∃N t₁\²,)E \ N	hin / J3										
	Conr	Tubing F _{TB} (in)		3NI " ² /	E\N 7 E ×	Box		3	∩N / ,²/τ (OX 3	3	JU ",	Box 3 ¹ /		Box 3 ¹ /		Box 3 1/3		Box 3 ¹√		Box 3 ¹ / ₂		Box 3 ¹ / ₂		JN "	ν 1 τν	BC Er
	Max.	lifting depth (m)	909	006	1200	1500	1800	009	006	1200	1500	009	006	1200	009	900	1200										
PUMP	o N	Displacement (m³/day)			8′0				,	٦			1,2			1,35											
Πd		Pump type	PEU-450-060-S76	PEU-450-090-S76	PEU-450-120-S76	PEU-450-150-S76	PEU-450-180-S76	PEU-450-060-S98	PEU-450-090-598	PEU-450-120-S98	PEU-450-150-S98	PEU-450-060-S120	PEU-450-090-S120	PEU-450-120-S120	PEU-550-045-S135	PEU-550-090-S135	PEU-550-120-S135										

12

PCP BENCH TEST

Each pump is tested on a bench test according to ISO 15136-1 to ensure the customer receives a pump of propper efficiency for the application. Pump test reports will supply useful information such as pump efficiency and torque. Follow - up testing on used pumps can help determine whether or not they can be reused on another application.

Test Report Example:

No.:

Product: PROGRESSIVE CAVITY PUMP PEU-350-120-S16 N

Rotor series: 13 K 586 Stator series: K 672 Elastomer code: NBR 2

Stator/Rotor tightening: N (J=clearence; N = normal; T = tight)

Testing fluid: Water with lubrication additives

Temperature testing fluid: 40 °C

DATA SHEET FOR PCP SELECTION

Our specialists have ability to analyze and reccomend the most efficient and effective PCPump by typedimension, elastomer type, rotor size and other characteristics for each application. Please ensure that all production and minimum well data information is completed as accurately as possible. The quality of the information is critical to the well modeling from which the equipment and technical recommendations are proposed.

Data sheet ISO-15136

Date									Well in	forma	ation	
Company								Well name				
name:							1	Field				
Contact								Well location	Onshore		Of	fshore
Phone								Operating environment of Conventional oil	nment Coa		ethanel	
E-mail								Reservoir type: Unconsolidated	Carbonate □	Co		ted sandstone □ Shale □
Comple	tion da	ta	U	Inits circ	le one					quifer	drive 🗆	Solution gas drive
Pump seating depth	[PSD]				n	n - ft						nt Horizontal [
(measured depth [M Pump seating depth	[PSD]				-	n - ft		Completion type Slotted liner □	: Perforating	casin	g 🗆	Open hole
(true vertical depth [Inclination at PSD	(VDJ)	\top			°/ 100	ft - ° /	/ 30 m	Target production	Gravel pa	ICK 🗀	San	nd screen □ m³pd - bfpd
Maximum deviation	or							Target PCP sen				,
dogleg severity for F				1	°/ 100	ft - ° /	/ 30 m	Deployment me	thod	Rod	□ Tub	ing□ Wireline □
Total well depth (TV	(D)			·	m -	ft		Prod	uction data		Units o	ircle one
Datum or reference					m -	ft		Current producti	on			m ³ pd - bfpd
Depth of producing (MD and / or TVD)	interval				m -	ft		Water cut				%
Casing OD					mm	ı - in		Solids				% by volume
Min casing drift dian between wellhead a					mm	ı - in		Minimum/maxim pump speeds (if		al		rpm
Casing weight and o	grade				Kg/	m – I	bm/ft	Producing gas o				sM ³ /sm ³ - scf/stb
Casing connection t	уре							Wellhead pressu	ıre			kPa - psi
Tubing OD					mm	ı - in		Casing pressure				kPa - psi
Tubing weight					Kg/	m – I	bm/ft	Pump intake ten	perature (sta	tic)		C-F
Tubing grade								Mallhand towns				0.5
Tubing thread type								Wellhead tempe	rature			C-F
Tubing inner coating	g type ar	nd thic	kness	(if applic	able)			Fluid level from	surface: static			m - ft
Packer? MD:					m -	ft		Reservoir tempe	rature at datu	m dep	oth	C-F
Torque anchor dept	h MD:				m -	ft		Reservoir static				kPa - psi
Torque anchor type								Producing press or producing flui		ntake		kPa – psi m - ft
								Productivity inde			'	m³/kPa – bbl/p
Pump intake type: S							İ	Casing / tubing	gas rate ratio			sm ³ /sm ³ –
Static gas separator	' □ Tail	Joint L	_ Othe	er 🗆				downhole free g efficiency	as separation			scf/stb
Fluid data								Slugging tenden	cy of fluid / ga	s/so	lids into	pump?
								Yes No No			·	
API oil gravity				_	degre	es		History of scale				No 🗆
Tatal Avidadas							ا م	History of paraff				No □
Total fluid viscosity				сP			C-F	History of aspha Foamy oil behave		on?		No □ No □
	-+			сP	+		C-F	-		emssi		lugging and erosio
Viscosity table				сP			C-F	of downhole con				No □
				сР			C-F	Emulsions?			Yes 🗆	No □
H ₂ S	% - p	pm	Wate	r S.G.				If yes, please prodata	ovide inversio	n poin	t and en	nulsion viscosity
CO ₂	% - p	pm	Wate	r Salinity			ppm		als being injed	ted in	the wel	l? Yes□ No□
Water pH								If yes, please de	scribe:			
Bubble point pressu	re at res	servoir				LED	o n=!	Can you provide	:			
temperature						KP	a - psi	Deviation survey	,		Yes □	No □
Aromatics (benzene	toluon	مايد ه	nol			%		Compositional fl	uid analysis		Yes □	No 🗆

